
Vision Based Wheel Condition Monitoring

Kambiz Nayebi Beena Vision Systems, Inc.

Condition Based Maintenance

Benefits for the Industry

- High Availability of Rolling Stock
- Optimum use of personnel for Maintenance
- Preventative Maintenance
- Need Based Maintenance vs Time based Maintenance
- Minimizing Timely and Unscheduled Maintenance to Prevent Adverse Impact on Operation
- Monitoring Leading Indicators
- General Fleet Weakness and Failure Point Detection
- Cost Savings
- Reduce Risk to Personnel / Increased Safety

Industry Expectations from TCM systems

Reduced Cost with Higher Reliability, Freight vs Passenger

Operations Consideration

- Painless Operation
- Reliability
- Availability
- Verifiability
- High Enough Accuracy
- High Data Quality
- Actionable Information

Business Considerations

- Inspection of Rolling Stock Using Technology
- Predict and Prevent Failures
- Move Hard Decision Away from the Maintenance Crew
- Minimize Depot Maintenance Visits
- Use Labor to Repair
- Drive Planning and the Supply Chain through CM
- Prevent Disasters

Main Wayside Detector Types

From 40's to 2101's and Future


Wayside Detectors have been deployed since early 1950's with first talkers at 60's

- GEN 1: Hotbox/Hot Wheel (1950's with IR Detectors)
- GEN 2: WILD and Acoustic Bearing Detectors (1980's)
- GEN 3: Wheel Profile Measurement (Early 2000's)
- GEN 4: Brake Shoe and simpler Image Based Systems (2000's)
- GEN 5: Vision Based Inspection Systems (2010's)
- Next Generation: Full Vision Inspection along with Multispectral/Thermal/3D aligned with other noncontact sensing technologies

There has been some attempts to bring Ultrasonic, EMAT, X-Ray, Thermal, Radar, Lidar and other NDT techniques to mainline wayside detection systems.

Characteristics of Vision Based Systems

Cameras to Improve Inspector Eyes

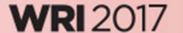
- Versatility: Cameras see a Whole Lot
- Fast: Sophisticated Inspections at Speed
- Easy Verification: Verification is Usually Very Easy with Access to Images
- Data Presentation: Intuitive with Combination of Data and Images
- Processing Categories: Measurements vs. Inspections (Detection)
- System Categories: Component Specific to Area Specific Imaging
- Capabilities: Complex and Accurate Measurements/Inspections

Characteristics of Vision Based Systems

Complexities of Vision Based Systems

- High Computational Complexity: Demand for High Computational Power
- **Development Time:** Sophisticated Vision Algorithms Takes Time to Mature
- Large Data Volume: GBytes of Data per Train
- Power: Some Systems are Power Hungry
- Availability: Keeping Systems Fully Operational 24/7
- Ambient Light is the Main Enemy: Only a Well Designed System Can do the Job
- Not as Easy as it may Look!

A Typical US Vision Detector Site



Usually Multiple Sensors are Installed in One Location

In this site systems that are installed listed from left to right: Coupler Inspection System, Undercarriage Inspection System, Wheel Profile Measurement, Brake Shoe Measurement, and Truck Inspection Systems

A Typical Western Australian Site

Usually Multiple Tracks are Equipped with Detectors

This is a double track site with several systems installed on each track.

A Typical Passenger Train Inspection Site

A Typical Successful Example

- Wheel Profile and Brake Pad Units Installed
- Painless Operation for 5 years
- Very Reliable
- More than 99.9% Availability
- Yearly Verification
- Accuracy to the Level of 0.2mm
- High Quality Data
- Replaced Manual Measurement for Daily Maintenance
- Operates on Different Types of Rolling Stock

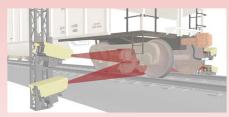
Different Vision System Types (1)

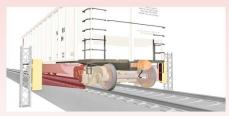
Laser Based Systems

Wheel Profile Measurmet

Total Wheel Inspection

Brake Pad/Shoe Measurement





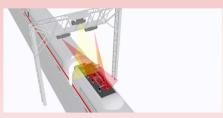
Different Vision System Types (2)

Pure Image Based Systems

Brake Shoe Measurement

Bogie (Truck) Inspection

Undercarriage Inspection

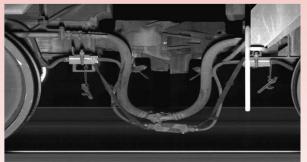


Different Vision System Types (3)

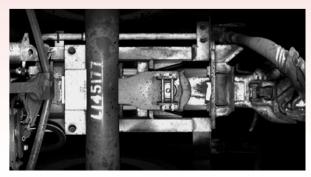
Laser/3D/Image/Thermal Imaging Based Systems

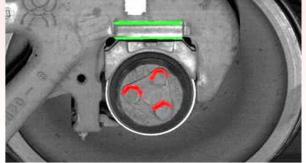
Pantograph Inspection

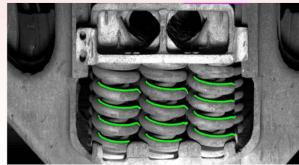
Total Train Inspection

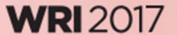

Brake Disk Measurement

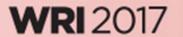
WRI 2017


Typical Images from Different Systems


Real Images from Real Systems







US/Australia / Europe Sites

Full Wheel Inspection Station

Static and Dynamic Wheel Measurements

STATIC

- Wheel Profile
- Wheel Diameter
- Wheel Equivalent Conicity
- Wheel Surface Defect
- Wheel Plate Inspection
- Broken Wheel Sections
- Externally Visible Cracks
- Internal Defects and Cracks

DYNAMIC

- Wheel Hunting
- Angle of Attack
- Back to Back
- Wheel Surface Temperature

Wheel Profile Measurement

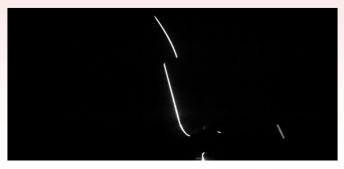
WheelView

Standard Measurements

- Flange Height
- Flange Thickness
- Flange Slope
- Tread Hollow
- Rim Thickness
- Back-to-Back
- Tread Rollover
- False flange
- Tracking Position
- Wheel Diameter (Option with WV-F/I/D)

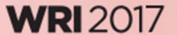
Typical Accuracy

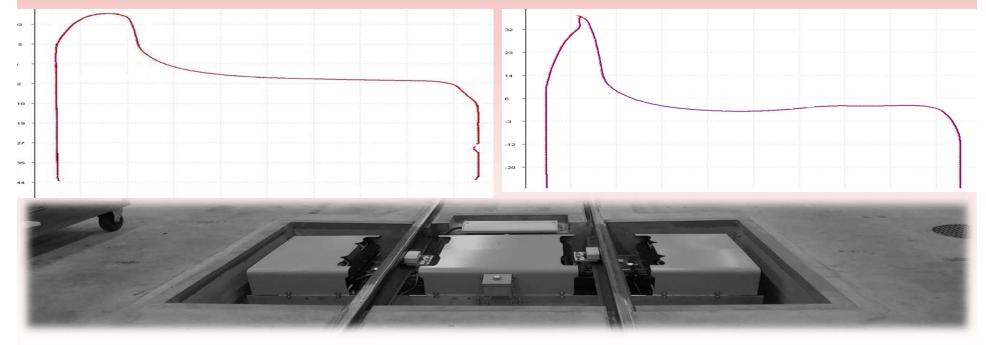
- Flange Height, Thickness, Hollow:
 - General accuracy: ±0.5mm
 - Low speed depot: ±0.3mm
- B2B: ±1.0mm
- Rim Thickness: ±1.0mm
- Diameter: ±2.5mm

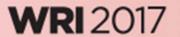


Wheel Profile Measurement

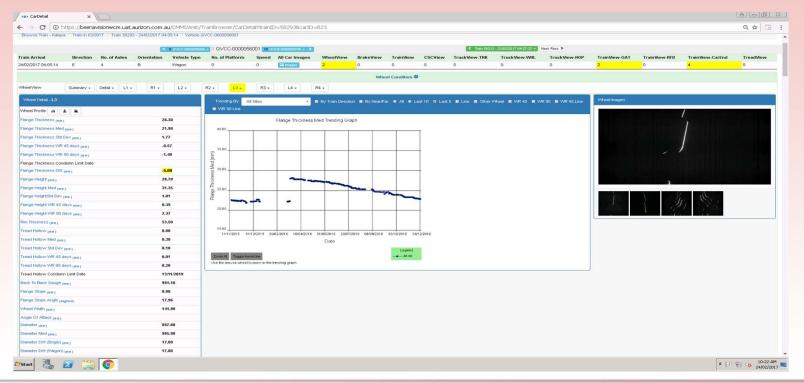
Raw Images from WVF






Measure Wheel Profile

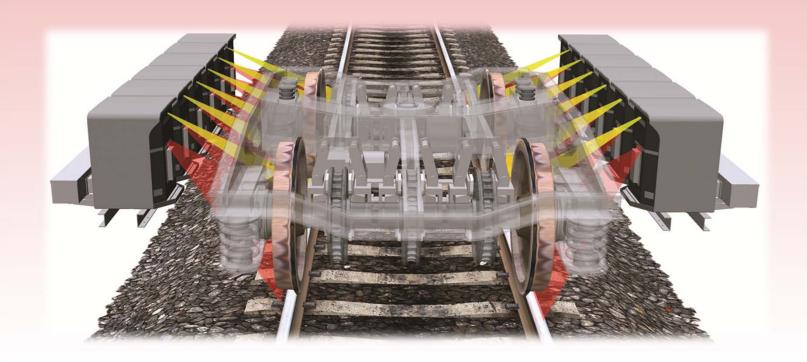
Full End to End Profile

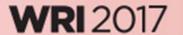


Wheel Profile Measurement

Flange Thickness Measurement

From Wheel Profile and Impact to Wheel Condition


- Wheel profiles are measured at one or few points on the wheel.
- In wheel profile measurement systems, inherent assumption is that wheel wear is uniform.
- Impact measurement systems have an inherent assumption that the contact patch is on the defective part of the wheel and impact measurement can detect it.
- Even so, many condemnable wheel defects may not have significant wheel impact.
- Impact measurement requires a minimum speed of travel.
- Many catastrophic wheel failures do usually either start with small surface defects or demonstrate themselves as an anomaly on the wheel surface.
- Optical Wheel Surface Inspection has turned out to be a viable solution that can fill in the gaps.



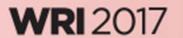
Wheel Surface Scanning Operation

A Wheel Inspection Station

TreadView and WheelView

This site was developed to evaluate the performance of a fully automated wheel condition monitoring system. This site sees up to 60 trains a day.

BNSF Installation of TreadView



Full Surface Condition Monitoring

Static Wheel Measurements

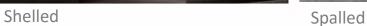
Wheel Surface Defects

- Shelling
- Spalling
- Dents
- Flats
- Fatigue Cracks
- Out of Round
- Built-up tread

- Grooves
- Broken and Separated Sections
- Externally Visible Cracks
- Shattered Rim
- Wear Variation along the wheel surface
- Significant Spread Rim
- Vertical Split Rim

Sample Wheel Defects

Detectable with TreadView



Built-up

Shattered

alled

More Defective Wheels

Built-up and Broken Rim

Built-Up Tread

Broken Rim

A Full Vision Based Wheel Inspection Station

TreadView and WheelView

With this station, the task of Wheel Inspection is completely eliminated from the shop floor. Wear, Tread, and Plate condition monitoring are all performed automatically.

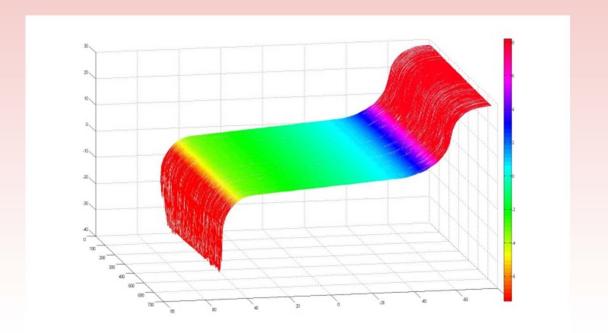
Full Wheel Inspection System

TreadView

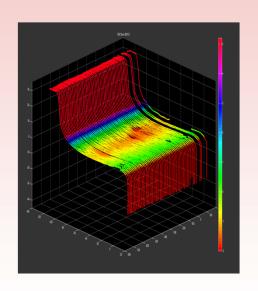
Standard Measurements

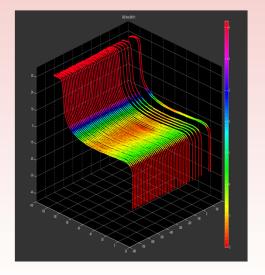
- Shelled/Spalling/RCF Wheel
- Flat Wheel (Skid, Localized Collapse, Polygonazation)
- Built-up Tread
- Wheel Profile Variation
- Wheel OOR
- Missing/Broken/Shocked Flange/Tread
- Tread Groove
- Angle of Attack and Wheel Hunting

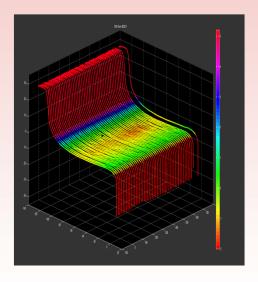
Typical Accuracy


- Out of Round: ±0.25mm
- Wheel Surface Defects:
 - Lateral: ±0.1mm
 - Longitudinal: ± 1mm
 - Depth: ±0.2mm
- Longitudinal for low speed depot: ±0.3mm

Perfect Wheel

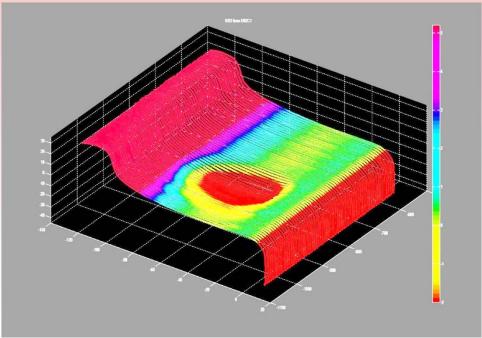






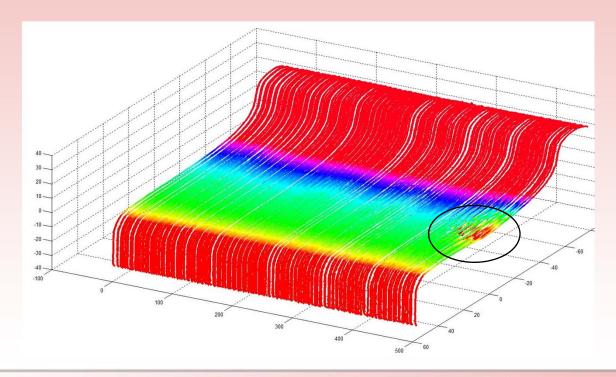
Hollow Wheel

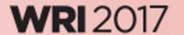
Measured Across the Whole Wheel



Flat Wheel

Size and Depth are Measured

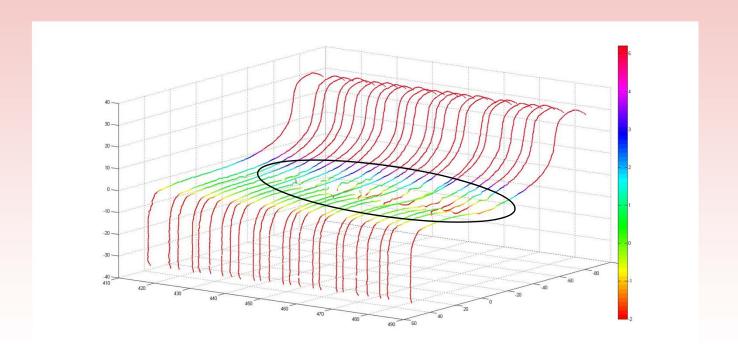


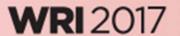

A Sample 3D Map of a Defective Wheel

Shelling

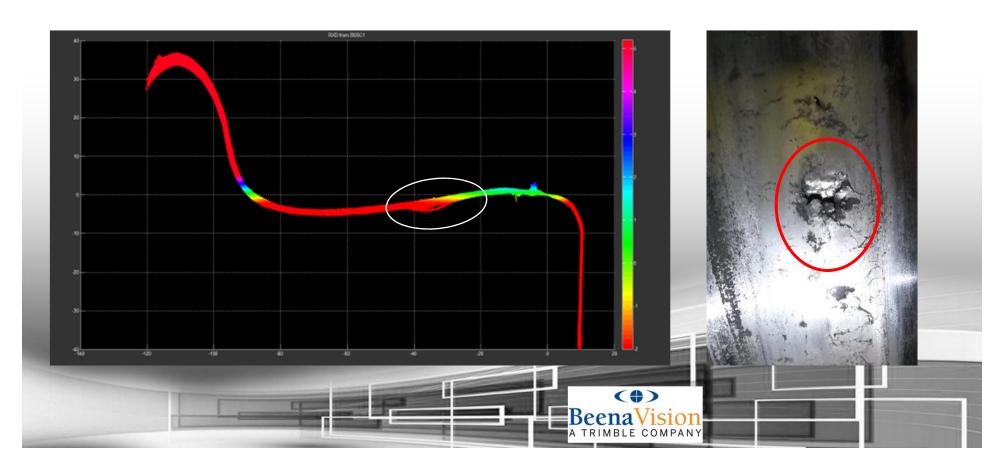
TreadView Surface Defect

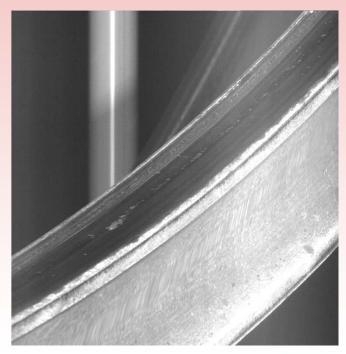
A Detected Shell Example

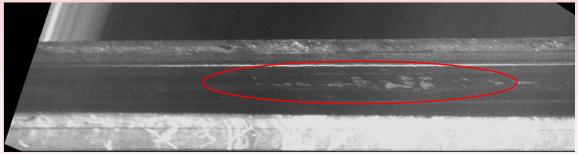



3D Wheel Surface Data

A Shell is detected on the wheel surface

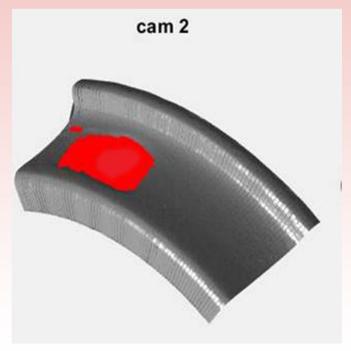



Another Wheel Surface Defect


Shelled/Spalled/Built-up Tread Wheel Detection

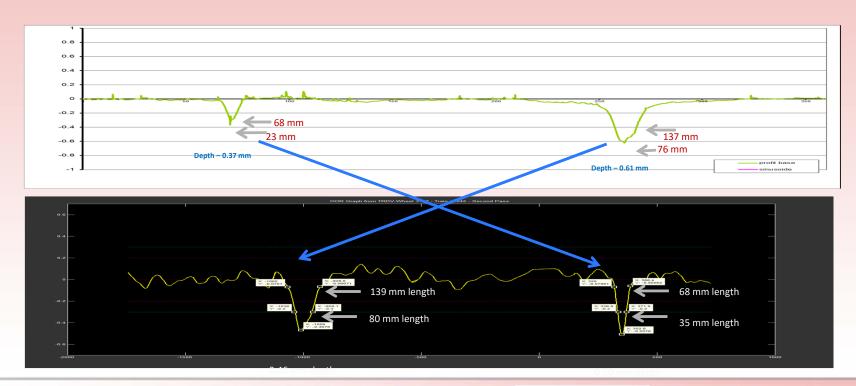
Wheel Surface Imaging

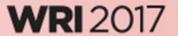
Visual Inspection



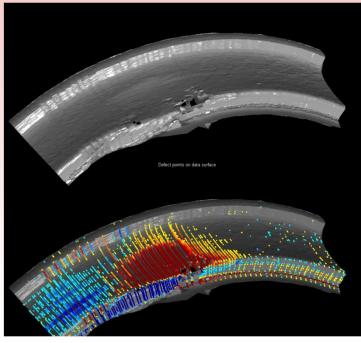
Visual Inspection of Wheel Flats

Automatic Detection and Size Evaluation

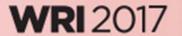


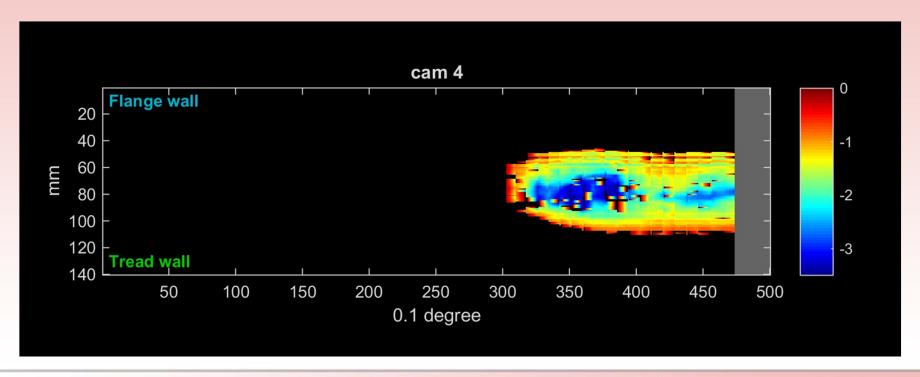


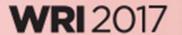
Out of Round Measurement



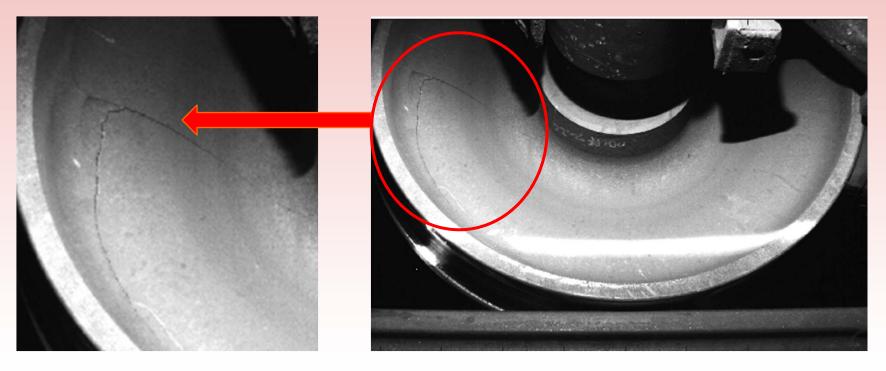
Broken Wheel and its Detection Model


Rendering




Wheel Surface Representation

Color Depth Display



Cracked/Broken Wheel Plate

Use Wheel Plate Images

Conclusion

Wayside Detectors and Vision Based Condition Monitoring Systems,


- Role of Wayside Condition Monitoring Systems in the Railroad Industry has become pronounced in the last two decades
- Vision Based Inspection Systems is now playing a significant role in this sector
- Wheel Inspection technology has reached to a mature state where a full inspection of the wheel is possible at full track speed.
- Vision Based CM systems are irreversibly changing railroad maintenance operations worldwide.
- Acknowledgements: BNSF Railway

Thank You / Questions

Kambiz Nayebi

Beena Vision Systems Inc.

Phone: +1 (678) 597-3156

E-Mail:

knayebi@beenavision.com

